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Abstract: In this paper, we study some properties of an exponentially optimal filter proposed by
Tadmor and Tanner. More precisely, we consider the problem for approximating the function of
rectangular type F(t) by the class of exponential functions σadapt(t) about the Hausdorff metric.
We prove upper and lower estimates for “saturation”—d (in the case q = 2). New activation and
“semi-activation” functions based on σadapt(t) are defined. Some related problems are discussed.
We also consider modified families of functions with “polynomial variable transfer”. Numerical
examples, illustrating our results using CAS MATHEMATICA are given.
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1. Introduction

In antenna-feeder techniques, the most often occurred signals F(t) are of rectangular type, as
shown in Figure 1. In [1,2], the authors construct a new class of accurate filters for processing piecewise
smooth spectral data.

Figure 1. Signal of rectangular type—F(t).

Definition 1. The exponentially optimal filter is defined as [1,2]:

σadapt(t) :=

 e
cqtq

t2−1 ; |t| < 1,

0, |t| ≥ 1
cq = 2q.

3
8

.
18q2 + 3q + 14
9q2 + 6q + 2

. (1)

Various modifications of this “powerful” class of functions have been proposed and studied by
a number of researchers. This study represents a certain interesting problem for approximating the
function F(t) with the specified class of exponential functions σadapt(t) in the Hausdorff sense.
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Definition 2 ([3,4]). The Hausdorff distance (the H–distance) [3] ρ( f , g) between two interval functions f , g
on Ω ⊆ R, is the distance between their completed graphs F( f ) and F(g) considered as closed subsets of Ω×R.
More precisely,

ρ( f , g) = max{ sup
A∈F( f )

inf
B∈F(g)

||A− B||, sup
B∈F(g)

inf
A∈F( f )

||A− B||}, (2)

wherein ||.|| is any norm in R2—e. g. the maximum norm ||(t, x)|| = max{|t|, |x|}—hence, the distance
between the points A = (tA, xA), B = (tB, xB) in R2 is ||A− B|| = max(|tA − tB|, |xA − xB|).

The basic approaches for approximation of functions and point sets of the plane by algebraic
and trigonometric polynomials in respect to Hausdorff distance (H–distance) are connected to the
work and achievements of Bl. Sendov who established a Bulgarian school in Approximation theory,
particularly for developing the theory of Hausdorff approximations.

For some basic results, see [5,6].
In this paper we consider some intrinsic properties of function (1). A number of modified adaptive

functions have also been proposed that can find application in the field of antenna-feeder analysis.
Of course, the specialists working in this direction will assess which of the new models have the right
to exist.

2. Main Results

2.1. Some Intrinsic Properties

We will consider only the case q–even (see, Figure 2). Let t0 be the value for which σadapt(t0) =
1
2 —i.e., t0 is the solution of the nonlinear equation:

e
cqtq0
t20−1 − 1

2
= 0. (3)

The Hausdorff distance d between F(t) and σadapt(t) satisfies the relation:

e
cq(t0−d)q

(t0−d)2−1 = 1− d. (4)

Figure 2. The exponentially optimal filter σadapt(t) for q = 4, 8, 16.

Some computational examples using relations (3) and (4) are depicted on Figure 3.
Equations (3) and (4) are nonlinear equations for solving t0 and d. For large values of q, the coefficient
cq grows very rapidly, which severely limits the computational calculations and visualization of
the results in any Computer Algebraic Platform. The same remark remains valid when solving the
nonlinear Equation (4) for the magnitude of the best Hausdorff approximation—d. This requires
obtaining precise two-sided estimates for d. We will sketch the idea, for example, for q = 2. Let (see (4))

G(d) = c2
(t0 − d)2

(t0 − d)2 − 1
− ln(1− d).

The following theorem gives upper and lower bounds for d.



Mathematics 2020, 8, 1963 3 of 15

Theorem 1. Let q = 2. The “saturation”-d satisfies the following inequalities

dl :=
1

2p2
< d <

ln (2p2)

2p2
:= dr. (5)

where

p2 =
1 + 2c2t0 − 2t2

0 + t4
0

(t2
0 − 1)2

.

Proof. From G′(d) > 0, we conclude that the function G is strictly monotonically increasing. Consider
the function

G1(d) = c2
t2
0

t2
0 − 1

+
1 + 2c2t0 − 2t2

0 + t4
0

(t2
0 − 1)2

d = p1 + p2d. (6)

Figure 3. Approximation of F(t) by σadapt(t): (a) q = 2, cq = 2.76, t0 = 0.448028;
Hausdorff distance d =0.185197; (b) q = 8, cq = 182.492, t0 = 0.482049; Hausdorff distance
d = 0.0974479; (c) q = 16, cq = 47781, t0 = 0.489945; Hausdorff distance d = 0.0646479;
(d) q =30, cq =7.9266 × 108, t0 = 0.494313; Hausdorff distance d = 0.0427321.

From Taylor expansion, we obtain G(d)− G1(d) = O(d2). Hence, G1(d) approximates G(d) with
d→ 0 as O(d2) (see, Figure 4). In addition, G′1(d) > 0. Further, we have

G1

(
1

2p2

)
= p1 +

1
2
= −0.193147 < 0,

G1

(
ln (2p2)

2p2

)
= p1 +

1
2

ln (2p2) = 0.445106 > 0.

This completes the proof of the theorem.

From (5), we see that for q = 2, dl = 0.102642 < d = 0.185197 < dr = 0.233665.
The reader may formulate the corresponding approximation problem for arbitrary q following the

ideas given in this note, and this will be omitted. Some techniques for obtaining accurate two-sided
estimates can be found in [7].

Figure 4. The functions G(d) and G1(d) for q = 2.
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2.2. Some Remarks

The basic problems considered in [8–10]) are an approximation of functions and point sets by
algebraic and trigonometric polynomials in the Hausdorff metric as well as their applications in the
field of antenna-feeder techniques, analysis and the synthesis of antenna patterns and filters, including
noise minimization by the suitable approximation of impulse functions.

The application of Fourier analysis for the approximation of impulse and transmitting functions
is compared to this, which can be obtained using the elements of the best Hausdorff approximation.

The advantage of the Hausdoorff metric is the removal of “Gibbs’ phenomenon” [11] (see,
Figure 5).

Figure 5. A typical application of Fourier transform to analysis of radiation patterns (“Gibbs’
phenomenon”) [8].

• Modified Families with ”Polynomial Variable Transfer”

Following the ideas formally given by us, we consider the following modified families of functions
based on σadapt(t) with “polynomial variable transfer”:

F1(t) := e
cq f (t)q

t2−1 ,

f (t) =
n

∑
i=0

aiti, a0 = 0
(7)

and

F2(t) := e
cq f (t)q

f (t)2−1 ,

f (t) =
n

∑
i=0

aiti, a0 = 0.
(8)

The modified families: F1(t) for q = 2, n = 3, a0 = 0, a1 = 3.96, a2 = −18.9, a3 = 5.7 and F2(t)
for q = 2, n = 4, a0 = 0, a1 = −1.96, a2 = 8.9, a3 = −6.7, a4 = 2 are depicted in Figure 6.

Let t = b0(π cos(θ) + a), where θ is azimuthal angle and a is the phase difference.

Then, for example, typical radiation patterns with “restrictions” using F1(θ) for

(a) q = 2, n = 3, a0 = 0, a1 = 1, a2 = −3.9, b0 = −0.5, a = 3.2;

(b) q = 2, n = 3, a0 = 0, a1 = 1, a2 = −3.9, b0 = −1.8, a = 2.4

are plotted on Figures 7 and 8.

Numerical examples are presented using CAS MATHEMATICA.
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Figure 6. (a) Modified family F1(t) for q = 2, n = 3, a0 = 0, a1 = 3.96, a2 = −18.9, a3 = 5.7;
(b) Modified family F2(t) for q = 2, n = 4, a0 = 0, a1 = −1.96, a2 = 8.9, a3 = −6.7, a4 = 2.

Figure 7. A typical radiation pattern with “restrictions” using F1(θ) for q = 2, n = 3, a0 = 0, a1 = 1,
a2 =−3.9, a3 = 1.7, b0 =−0.5, a = 3.2.
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Figure 8. A typical radiation pattern with “restrictions” using F1(θ) for q = 2, n = 3, a0 = 0, a1 = 1,
a2 =−3.9, a3 = 1.7, b0 = −1.82, a = 2.4.

• The New Activation Function

We define the following activation function based on σadapt(t) (1):

F3(t) =
1− e

cqtq

t2−1

1 + e
cqtq

t2−1

. (9)

In antenna-feeder technique most often occurred signals are of types shown in Figures 9 and 10.
For q even, the corresponding approximation using model (9) is shown in Figure 9. For q odd, the
corresponding approximation using new activation function F3(t) is shown in Figure 10.

Figure 9. Approximation by F3(t) for q = 4, 6, 8.
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Figure 10. Approximation by F3(t) for q = 3, 7, 13.

The reader may formulate the corresponding approximation problem following the ideas given
in this article, and this will be omitted. The results have important role in the fields of Population
Dynamics, Biostatistics, Signal Theory, Reliability Analysis and Life testing experiments. For
other results, see [12–15]. Another application of the Hausdorff metric can be found in [16].

• New ”semi-activation” function

We define the following “semi-activation” function

F4(t) =
1− e

cqtq

(a0+a1t+a2t2)2−1

1 + e
cq(a0+a1t+a2t2)q

(a0+a1t+a2t2)2−1

. (10)

The problem of approximating the “point set” depicted in Figure 11 is also of independent interest
(in the limiting case, the “point set CROSS”—see, for instance, [17]).

Figure 11. Approximation by F4(t), q = 7: (a) a0 = 0, a1 = 0.04, a2 = 7.2; (b) a0 = 0, a1 = 0.01, a2 =

9.01.
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The modified family F4(t) for q = 7:

(a) a0 = 0, a1 = 0.04, a2 = 7.2;

(b) a0 = 0, a1 = 0.01, a2 = 9.01

is depicted in Figure 11.

• Another activation function

Formally, we define the following activation function

F5(t) =
e−

atq

t2−1 − e
atq

t2−1

e−
atq

t2−1 + e
atq

t2−1

, t ∈ (0.1) (11)

where a > 0.

The shifted Heaviside step function is defined by

ht0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

Obviously, the new function F5(t) can be used successfully to approximate the Heaviside step
function (see Figure 12).

Figure 12. Approximation of ht0 (t) by F5(t): (a) q = 6: a) a = 1000, t0 = 0.282245; Hausdorff distance
d = 0.0580217; (b) q = 3: a) a = 700, t0 = 0.0919762; Hausdorff distance d = 0.0460022.

Approximation of shifted Heaviside step function ht0(t) by sigmoidal function F5(t) for:

(a) q = 6: a = 1000, t0 = 0.282245; Hausdorff distance d = 0.0580217;

(b) q = 3 a = 700, t0 = 0.0919762; Hausdorff distance d = 0.0460022

is visualized on Figure 12.

The function F5(t) can be used in the field of population dynamics and biostatistics [7].



Mathematics 2020, 8, 1963 9 of 15

• The new function

Formally, we define the following function:

F6(t) = 1− e−
H(t)
G(t) (12)

where H(t) and G(t) are polynomials.

In some cases, the function F6(t) can be used for analysis of “rectangular signals”.

For example, see Figure 13 for fixed

G(t) = 1.17755t10 − 51.87041 ∗ t9 + 2.85984 ∗ t8 + 123.85465 ∗ t7 − 14.21173 ∗ t6 − 100.59484 ∗ t5 +

16.45178 ∗ t4 + 30.42548 ∗ t3 − 7.39353 ∗ t2 − 0.95663 ∗ t + 1.1 and

H(t) = t8 + t6 + t4 + t2 + 2.9.

Figure 13. The function F5(t)-red.

Remark 1. G(t) is the polynomial of best one–sided Hausdorff distance of the function

κ(t) =

 −1, if −1 ≤ t ≤ − 1
3 ,

1, if − 1
3 < t ≤ 1.

by polynomial of degree 10 (see, for example, [4]).

Let t = b0(π cos(θ) + a).

A “typical radiation pattern” F6(θ) for b = 0.132 and a = 4.263 is depicted on Figures 14 and 15.

Unfortunately, these diagrams cannot always be realized in practice.
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Figure 14. A “typical radiation pattern” F6(θ) for b = 0.132 and a = 4.263.

Figure 15. A “typical radiation pattern” F6(θ) for b = −0.13 and a = 4.349.

• Application to the ”cut-off function”

The analysis presented in this article can also be applied to the “cut-off function”, see (1):

F7(t) = e−
Ctp

t2−π2

where C > 0 and p is even.

• Approximation with restrictions

Often some restrictions must be imposed on the main lobe of the radiation pattern—for example,
see Figure 16



Mathematics 2020, 8, 1963 11 of 15

The polynomial

f (t) = 133.123786t10 − 251.561221t8 + 107.004415t6 + 36.476971t4 − 30.804320t2 + 6.189054

computed by Remez’s algorithm from [18] and shown in Figure 17, provides a reliable
approximation of the window (Figure 16).

We note that the “adaptive function” with c1 = 6.9

F8(t) =
1(

1− e
c1t2

t2−1

)2

based on function of Tadmor and Tanner (1) is of the form shown in Figure 17.

Unfortunately, these diagrams cannot always be realized in practice.

Specialists working in these scientific fields have the final word.

Figure 16. “Typical restrictions”.

Figure 17. “Typical radiation patterns”.

We will look at another instructive example.

A typical diagram function R(t) with imposed constraints at the median level is shown in
Figure 18.
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Figure 18. A typical diagram function R(t) with restrictions.

After serious analysis, it turned out that the function by Tadmor and Tanner could be modified in
such a way as to obtain the following “differential analogue with step h”:

σ∗adapt(t) := (σadapt(t) + σadapt(t− h))/2 (13)

where

σadapt(t) := e
cqtq

t2−1

and

cq = 2q.
3
8

.
18q2 + 3q + 14
9q2 + 6q + 2

.

From the attached visualization (see Figures 19 and 20) it can be seen that the proposed new
modification can be used successfully for the approximation of functions of type R(t).

Obviously, higher order differential analogues can be obtained, which we leave to the
readers’ attention.

Figure 19. The function σ∗adapt(t) for q = 8: (a) h = 0.32; (b) h = 0.22.
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Figure 20. The function σ∗adapt(t) for q = 16: (a) h = 0.32; (b) h = 0.22.

3. Concluding Remarks

The aim of the present research is to define families of “adaptive functions” that could be used in
various branches of scientific knowledge, in particular in the approximation of a number of classical
impulse signals, point sets in the plane and supplemented graphs of discontinuous functions.

Questions related to the synthesis and analysis of transfer functions, radiation diagrams with
algebraic and trigonometric polynomials about Hausdorff distance are elaborated in detail in the
monograph in [8].

In this article we consider only some aspects related to the disclosure of intrinsic properties of
some of the proposed families of “adaptive functions” in a purely methodological aspect.

Many of the proposed new models could not be used as “feasible models–diagrams” in practice.
In this connection, the specialists working in the indicated field have the floor. For some results,

see [19–39].
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